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Abstract—Consistent calculation of fugacities of fluid mixtures remains as one of the most important subjects
in contemporary molecular thermodynamics. In practice, equations of state (EOSs) and gf-models have been used.
However, most EOSs are erroneous for condensed phases at high densities and gf-models are inapplicable for pressure-
sensitive systems. Recently to remedy the shortcomings in both approaches, there has been a surge of new gf-EOS
mixing rules. By equating any set of EOS and gf-models, the limitations in both approaches could be resolved signifi-
cantly. However, the self-consistency in the underlying concept of those mixing rules remains controversial. During
the last several years, the present authors proposed a new lattice-fluid EOS and its simplification relevant to phase
equilibrium calculations. Without employing any gf-EOS mixing rule and with only two parameters for a pure compo-
nent and one adjustable interaction energy parameter for a binary mixture, results obtained to date demonstrated
that the EOSs are quantitatively applicable to a great variety of phase equilibrium properties of mixtures, especially,
for complex and/or macromolecular systems. In the present article we summarize the EOSs and extended the applica-
tions to liquid-liquid Equilibria. In part 1, we discussed briefly the molecular thermodynamic aspects of general deriva-
tion of the EOS and a brief discussion of applying the EOSs to pure fluids while the illustrative application to various

real mixture systems is discussed in part II
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INTRODUCTION

Knowledge of fluid-phase Equilibria of fluids and fluid mixtures
is essential for designing, optimizing and performing separation
and purification processes. All design methods for chemical pro-
cesses require quantitative estimates of various phase equilibria.
Thus, a vast quantity of literature regarding the molecular ther-
modynamics of phase equilibria has been generated during the
last century. However, the goal of correlating or predicting mix-
ture properties from pure component information remains as the
most elusive problem. Difficulty in predicting phase Equilibria
of mixtures follows from the inadequate understanding of the
intermolecular potential energy plays in fluid. Therefore, to calcu-
late various phase Equilibria, it is necessary to construct empirical
or semiempirical models; models are only approximations and,
thus, contain parameters that must be obtained empirically.

For any type of phase Equilibria, the thermodynamic function
of primary interest is the fugacity (f) which is directly related
to the chemical potential (u) and in principle it can be calculated
from the volumetric data, ie., EOSs. The EOS method uses a
homogeneous model for all phases and is equally applicable to
pure compounds and mixture properties. However, to apply an
EOS to condensed phase, volumetric data must be available over
an entire density range from ideal gas state to the condensed
phase including a two-phase region and often it is not practical
to do so because very little data of this type has been reported.
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Alternatively, fugacities in condensed phases, i.e., liquid mixtures,
are calculated with activity coefficients (y), which are directly rela-
ted to excess Gibbs energy (g5). Activity coefficient models are,
however, strongly dependent on composition, weakly on tempera-
ture and very weakly on pressure. So, they fail to take into ac-
count inherently the effect of pressure and they cannot be applied
to pressure-dependent systems such as polymer-supercritical fluid
systems.

Furthermore, performance demands on materials, which tradi-
tional processing techniques cannot meet, have increased unpre-
cedentedly in recent decades while process design engineers have
to dedl with more complex systems in which the activity coeffi-
cient models are frequently more difficult to apply than EOSs
and it is necessary to find appropriate EOSs to model the complex
phase behavior of molecular mixtures under a variety of condi-
tions. Thus, during the last decades, motivation of research on
developing new EOSs for complex mixtures has been increasing.
Also, there has been a surge of new gf-EQS mixing rules as an
ad hoc method. In the mixing rule, by equating a set of EOS
and gf-models, the shortcomings in both approaches could be re-
solved significantly. Especially, by utilizing information of group
contribution gf-models such as UNIFAC, one can make an EOS
as predictive and/or gf-models that can be used in high pressure
system. However, the self-consistency in the underlying concept
of those mixing rules remains controversial [Huron and Vidal,
1977; Wong and Sandler, 1992].

Recently, based on the nonrandom lattice fluid theory of Gug-
genheim [1952], the present authors proposed a new EOS and
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its simplified version relevant to a variety of phase Equilibrium
calculations [You et al, 1993, 1994a, b, c; Shin et al, 1994a, b,
19952, b; Yoo et al, 1994, 1995]. Without employing a gf-EOS
mixing rule and with two parameters for pure components and
one adjustable interaction energy parameter for binary mixtures,
results obtained to date with the new EOSs demonstrated that
they are quantitatively applicable to phase Equilibria of mixtures
as well as pure fluids. Especially the EOSs are found to be reliably
applicable to complex and/or macromolecular systems. In the pre-
sent articles we summarize the thermodynamic framework related
to the general derivation of the EOSs and present resuls of new
extensions of the EOSs to liquid-liquid Equilibria and activities
of solvents in polymer solutions. In part I, we briefly discuss the
molecular thermodynamic aspects of general derivations of the
EOSs. The illustrative applications of various phase Equilibria to
real complex mixtures are discussed in part IL

BRIEF REVIEW ON THEORIES OF SOLUTION:
THE LATTICE THEORY

The EQS approach for complete determination of phase Equili-
bria is still often not as promising as the excess function approach
because we usually do not have sufficiently accurate knowledge
of volumetric properties of mixtures at high densities. Knowledge
of volumetric information of mixtures whose molecules differ
greatly in size is even more inaccurate because of our inadequate
understanding of intermolecular forces and the fundamental struc-
ture of condensed states of such systems. Up to the present cubic
EOSs have been employed extensively although other new non-
cubic EOSs have also been used [Carnahan and Starling, 1972;
Peng and Robinson, 1976; Orby and Sandler, 1994]. The cubic
EOS, however, proves physically inadequate when size differences
between component molecules become large [Kumar et al., 19877,
Thus, alternatively, an EOS based on the perturbed hard chain
theory has been developed for modeling polymer solutions whose
molecules differ greatly in size [Donohue and Prausnitz, 1975].
The EOSs stemming from the technique of perturbation over the
distribution function have been used to model mixtures of hydro-
carbons consisting of small and large molecules, however, the
apparent complexity and the large number of parameters in these
models makes them unattractive for practical purposes. However,
with increasing efficient computers and with advances in mole-
cular physics, the perturbation theory of fluids is likely to provide
a powerful tool for molecular thermodynamics in the near future
(Prausnitz et al, 1986].

The other type of models developed for systems whose mole-
cules differ greatly in size (i.e., polymer-solvent mixtures) is the
lattice model approach based on the full Guggenheim combinatory
of quasilattice description of fluids [Guggenheim, 1952]. As we
discuss in the next section, EOS as well as gf-models can be
modeled in principle from the Guggenheim’s quasichemical lattice
model which in its original form is restricted to small rnolecules
of essentially the same size. An earlier attempt for developing
activity coefficient models stemming from the rigid lattice was
made by Flory [1941, 1942], Huggins [1941, 1942] and others
[Staverman, 1950; Tompa, 1956] known as the Flory-Huggins
equation with x-parameter. The Flory-Huggins equation for real
solution does not provide an accurate description of the thermo-
dynamic properties of such solutions, but there is little doubt
that this relatively simple theory contains most of the essential
features which distinguish solutions of very large molecules from
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those of small molecules. Numerous extended works after the
Flory-Huggins’ pioneering model have appeared { Prausnitz et al,,
1986]. The latest developments in this field are attempts to allevi-
ate the shortcomings inherent in these early attempts.

Historically, the most important theory of solutions modeled
after the Flory-Huggins equation is the Prigogine-Flory-Patterson’
s free volume theory, sometimes called 'the new Flory EOS [Pri-
gogine, 1957; Flory, 1970; Patterson, 1969, 1970]. The new Flory
theory resorted to the use of the generalized van der Waals theory
with the lattice cell theory [Prausnitz et al., 1986; Hirschfelder
et al., 1954] in formulating the canonical partition function for
r-mer fluids. They obtained an EOS rather than an activity coeffi-
cient. The EOS contains three parameters for pure fluids and
in addition, two adjustable quantities are necessary for the charac-
terization of a binary mixture. This equation has been applied
widely for the thermodynamic properties of polymer solutions
[Hirschfelder et al., 1954; Zeman and Patterson, 1972; Zeman
et al, 1972; Siow et al, 1972] Also, by combining the residual
activity expression derived from the new Flory EOS to the Flory-
Huggins equation, the model has been used extensively for ob-
taining the x-parameter of various polymer solutions [Eichinger
and Flory, 1968]. Also, until the present numerous extended ap-
plications and modifications of the new Flory theory have appear-
ed [Bonner et al, 1972; Lee et al, 1972; Beret and Prausnitz,
1975; Panayiotou and Vera, 1980]. Others also have attempted
to adapt the lattice cell-theory with different notion for the free
volume to obtain different formulations for chain molecular sys-
tems [Somcynsky and Simha, 1971; Simha, 1977; Jain and Simha,
1980]. The new Flory EOS and its refinements still need to as-
sume a functional form in @ préiori for the free volume which
should be based on an empiricism and adopt an external degree
of freedom ¢ parameter, which is basically unknown for real solu-
tions. Also, one needs to know density and pressure dependencies
of the ¢ parameter and two mixing parameters in order to apply
the EOS polymer solutions. These disadvantages of the theory
introduce an additional uncertainty to mixture correlations.

The intrinsic difficulties retained in the new Flory theory have
been overcome in a rigorous manner by the latiice-fluid theories
based on the nearest-neighbor lattice statistical-mechanical theory
named after Guggenheim [Panayiotou and vera, 1981] known as
Guggenheim-Huggins-Miller approximation [Guggenheim, 1952].
The lattice fluid theory is used to enumerate the number of possi-
ble configurations when r-mers were placed on a three dimension-
al lattice. Different formulations of solutions can be considered
under the framework of the generalized Guggenheim combinatory
[Panayiotou and Vera, 1981]. Historically, several pioneering
theories of solutions have originated from it. When all the lattice
sites are occupied by molecules, we termed it as the ‘rigid lattice’
and one can derive not only the EQS but the activity coefficient
such as the work of Barker [1952] or UNIQUAC [Abrams and
Prausnitz, 1975] as discussed in the author’s previous papers
[You et al,, 1993; Shin et al,, 1995a]. However Sanchez and Laco-
mbe [1976a, b, 1978], in an attempt to obtain an EOS, assigned
the first concept of empty sites called ‘holes’ into the lattice
description. From a regular lattice description with holes an EOS-
type model can be formulated. Since the Sanchez-Lacombe’s
works, several models with this concept have been proposed [Ku-
mar et al, 1987; Kehiaian et al, 1978; Sanchez and Lacombe,
1976a, b; Okada and Nose, 1981a, b; Panayiotou and Vera, 1982;
Smirnova and Victorov, 1987].

The present authors, reviewed the existing lattice fluid theories
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stemming from the full Guggenheim combinatory and the quasi-
chemical approximation [You et al, 1994a, b, ¢] and discussed
in detail the unique features of the previous works done relating
to the lattice theory by other investigators, with their advantages
and shortcomings. They also proposed a new method of approxi-
mation to the Guggenheim combinatory, a new EOS, and its sim-
plified expression. They extensively confirmed the quantitative
applicability of the EOSs to the calculation of various phase Equi-
libria [You et al. 1993, 1994a, b, ¢; Shin et al, 1994a, b; 1995a,
b; Yoo et al, 1994, 1995]. In part I, we briefly summarize the
consequences related to the new EOSs and present our recent
efforts of extension of the EOSs to the calculations of hquid-liquid
Equilibria. While activities of solvents in polymer solutions are
discussed in part 1L

GUGGENHEIM COMBINATORY AND LATTICE
PARTITION FUNCTION

1. Guggenheim Combinatory of Lattice Theory

We briefly summarize here the nonrandom lattice hole partition
function based on the full Guggenheim combinatory [Guggen-
heim, 1952; Panayiotou and Vera, 1981; You et al, 1994al. In
a three dimensional lattice with the coordination number z and
of the cell volume Vg, molecules of component i occupy r, sites
and interact with neighboring segment of molecules with effective
surface area q; so that zq is the number of external contacts
given by

2q;=1z—2)+2(1—~1) Q)

where [; denotes molecular bulkiness factor. In the present work
we set it as zero as others usually do.

The configurational part of the nonrandom lattice partition func-
tion away from the critical point in the mean field approximation
may be written as follows,

Q=gp gnr exp(—pU) ¢4]

and the random contribution g is written in the Guggenheim-
Huggins-Miller approximation,

8 :[(I;QI:I!{!)] [ g,,: ]mN'wi ©)

Here N, and N, are defined as follows,
N,:No‘f‘EN,’I’., and N,,=N0+ZN,-q, (4)

where Ny is the number of holes. The summation is over all mole-
cular species unless specified otherwise. The expression for the
nonrandom contribution gve was also given by Guggenheim,

(me: nf(55)])

= 5)

(2]

where N, is the number of i—j segment contacts and the quanti-
ties with the superscript zero denoting the same for random mix-
ing.

N; satisfies the mass balance relations,

2N, + EN;=N;zq, 2N%+INj,;=N;zq for all i including holes

(6)
N;q, _ Na
Nq ’ eo'“ Nq (7)

N‘},: # , NL:]:ZNI'q:Bi, 6,=

_ N, _ N,
¢l— N, » ¢D"‘ N,

ity

where 0i and ¢i represent site fractions and segment fractions
for component i, respectively and the quantities with subscript
zero represent for hole fractions. The N, defined in Eq. (6) is
related to Nj in the quasichemical approximation as expressed
by Panayiotou and Vera [Guggenheim, 1952; Panayiotou and
Vera, 1981].

N;=Nj I )
[E=T.Texp(—p Ae,) (10)
Aei=¢;+¢;—2e; (1D

where f denotes 1/kT. The nonrandomness factor I'; may be ob-
tained from Egs. (9)-(11) but can be expressed in an explicit form
only for binary mixtures.

The potential energy U in Eq. (2) is written as follows,

U=ZINi{~ei)+ Z ZNj(—¢) (12)

] >
where ¢; is the absolute value of interaction energy between seg-
ments i and j.

‘Athermal solution’ corresponds to making U=0 and for this
solution gvr=1 or N;?=N,;. The explicit dependence of N; on
the interaction energy parameter was obtained in the quasichemi-
cal approximation by Guggenheim for binary mixtures without
considering vacant sites or ‘holes’.

2. An Elementary Derivation of Helmholtz Free Energy

The expression for the configurational part of the Helmholtz
free energy may be obtained using the relations,

BA'= —InC¥ (13)

As recently presented in detail by the present authors [You et
al, 1993, 19944, b, c; Shin et al, 1994a, b, 19953, b; Yoo et al,
1994, 1995], a new configurational Helmholtz free energy can
be derived from the full Guggenheim combinatory when /; is zero
by expanding A in terms of g; around the athermal solution. The
resulting expression of A° is given by:

- St (3) s xS )
A=A+ 22( gt = | L ZXE(— Eut (14

i N 08 /N2 gk dcudes | M a8
where superscript o indicates that the expression is evaluated
at the reference athermal solution. When the algebra is done,
a generalized rigorous expression of A° for a multicomponent sys-
tem can be obtained from Eq. (14). It is given by

BA“=ENIn pi+Noln(1—p)— iN,,ln[l + (ﬂf - l)p]

2 I
~(Z)przz00e,+ (£ )zrzz00sae,
X g5+ = €a—€n)] a9

where qu=ZXZx,q, ry=Xx;; and x; is the mole fraction of species
i. The lattice interaction energy ¢; is the absolute value of the
interaction energy between a segment of species i and that of
species j, which is assumed as follows,

&= v/ (g1 — Ay) (16)

where the A; is the binary interaction parameter. &; between holes
and molecular species is set to zero. Thus, from Eq. (15) all config-
urational thermodynamic functions can be formulated.

Korean J. Ch. E.(Vol. 12, No. 3)
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3. A Simplified Version of Helmholtz Free Energy

Although the formulation of Eq. (15) is self-consistent with a
sound theoretical basis, a less complicated model would be more
convenient in engineering oriented phase equilibrium calculations.
Accordingly, we put our efforts to make the previous expression
less complicated while preserving comparable accuracy. As recent-
ly presented in detail by the present authors elsewhere [Shin
et al, 1994a, b, 1995a, b], the rigorous expression of A given
by Eg. (15) can be reexpressed as

A= A 4 A4 AR an

where the ‘athermal’ part, AW, is equivalent to a combinatorial
contribution in the random array, the ‘random’ part, A%, is due
to energy of random mixing and the ‘nonrandom’ part, AP,
corrects for effect of nonrandom mixing.

We proposed an empiricization on the same lattice concepts.
While retaining the athermal part, we may replace the remaining
part by the sum if ideal solution part and excess part as,

A= A ASS) 4 AcE) (18)

where the athermal part is given by Eq. (15),
z qum

BA™=ENIn p,~+Noln(1—p)—~2—N,,ln[1+<~——r —1>p] 19)
M

The remaining parts are obtained using the thermodynamic
relation at constant volume and composition,

A _fwr l
T f moUd( T ) + constant (20)

as in the derivation of the UNIQUAC model [Wilson, 1964]. The
internal energy, U, is the sum of the ‘ideal solution’ part and
the ‘excess’ part in the frame of the nonrandom two-fluid theo-
ries as follows

_UB= % ZNq8,%, 21
U= 2 ENG(20,"%: ~ 0.%.) 22)

where 8; is the local surface area fraction of component j around
the segment of component i and the superscripts (0) and (1) de-
note the states before mixing and after mixing, respectively.

We introduce two assumptions to simplify the evaluation of
Egs. (21) and (22). The first is that the holes are random as Pana-
yiotou and Vera [1982] assumed in a different context. Then
the following relation holds, 8 =2N,q/N,=X6,. We have only
one molecular species in the pure fluid state. Therefore for each
pure species, 8,2=0,® The second assumption is 8"'=0/0=0
which implies that the total surface area fraction occupied by mol-
ecules is the same whether molecules are in pure states or in
mixtures. This assumption becomes exact as the number of holes
decreases to zero, in which case 0=1. Based on these assump-
tions, dropping the superscripts and rewriting Eqs. (21) and (22),
we have

U= %ZN,'Q{(GSH) @3)

In writing Eq. (24), we have also defined the surface area fraction
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on the hole free basis as 6;=Niqi/EN;q;=8,/.8 and §,=6,/8 8;
is then written in the following nonrandom mixing form as discus-
sed by Wilson [1964],

g=—29

Z'Ck,' [¢) (25)
where the nonrandomness factor t; is derived as t;=exp[po
(& — &)

Now using Eq. (20) we can convert Egs. (23) and (24) into cor-
responding Helmholtz energy expressions.

zN,

— AN = —E-‘f-(-)EN,-qﬁﬁ @
~pao=Demg 1395, @

The sum of Helmholtz free energies given by Egs. (19), (26) and
(27) yields the complete configurational Helmholtz free energy.
The free energy expression is similar to that of the UNIQUAC
model. The main difference is that the lattice contains holes now
and an EOS can readily be derived from the free energy.

MODELING LATTICE EOS AND CHEMICAL
POTENTIAL

From the rigorous and simplified configurational Helmbholtz free
energy equations given by Eq. (15) and Eq. (18), respectively,
expressions for configurational thermodynamic properties can be
obtained for each case. Since the volume V is represented by
V=V(N,+Z;r,) both EOSs are obtained from the relation; P=—
1/Vi{gA/9No)rn;. When the algebra is done, we have apparently
identical form of EOS for both cases as follows

T | RS C

Where &y of rigorous case is differ from the simplified case. They
are given by,

=2 200, + (£ 22220000 e, + 30— 2a 20
29)

en®=E0;+ E@—E&%—%;E‘L)— (30
Here, ey® denotes for rigorous case and g4 for the simplified
case.

The chemical potential of component i in a mixture for both
cases can be obtained by the equation; p=N,(3A/N;)rv=N.(d
A/9N)rn,+ N, V4P. Here N, is the Avogadro’s number. The re-
sulting equations for both cases are written by,

o p B

u'_‘ﬂ) pu'(S) 31
RT _RT T RT ™ + @D

RT  RT ' RT

where
B Ty — eln(l— (9_) [ (gz_) 32
RT ¥{T)—rin(1—p)+In o +rn| 1+ ” lp] (32)

b0 zgfed [l_r_-
_ 2Z0gy+ BETZ0EBmen(En+ 26m — 2iu— 1) ] (33)
928M
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u® _ zqBend? [l—i—l (1+e.'.')_]

RT 2 qg 0 e
29[} (B — 5O ] |
+ 3 [1 In(X6,)— X Tores (34)

where v(T) is the reference chemical potential which depends
only on temperature. These general equations for multicomponent
mixtures easily reduce to their pure forms since all gy become
¢; and t; become 1 for pure fluids [You et al., 1994a; Shin et
al,, 1995a].

The difference in chemical potential of component i in the mix-
ture and the chemical potential of pure component i at the same
temperature and pressure, Au/RT can readily be derived. Then,
the activity coefficient can be obtained by the expression

Al W W

RT RT =lna=In(x, v) (35)

The Flory-Huggins y; interaction parameter may be directly ob-
tained by the equation

Ap [ _ﬁ] 2 |
RT—ln ¢,+.1 . O+ g0 (36)

One of the advantages inherent to the lattice fluicd theory is
that the Guggenheim combinatory can readily be extended to r-
mers and thus the EOS proposed here can be applied to polymer
solutions. Comparisons of the present EOS to experimental data
for polymer solutions are discussed in part II of the present arti-
cle.

THERMODYNAMIC PROPERTIES FOR PURE
SYSTEMS

1. EOS, Chemical Potential and Fugacity Coefficient

For pure fluids, the simplified EOS given by Egs. (28) and (30)
reduced to the following expression since all gy beccme g; and
t; become 1 for pure compounds because holes are assumed to
be random. Therefore EQOS given by Eq. (28) and chemiical poten-
tial Eq. (31) are simplified as follows.

P= B%’H {%ln[l + (‘:—: — 1)0] —InQ1— p)} - (%)912%:_ @D

where gp of the rigorous case is differ from the simplified case.
They are given by,

sw:su[l—(-%) ea(zel—e,,)] (38)

e =gy (39

Here, %' denotes for rigorous case and €/ for simplified case.
Especially for the simplified case, the equation of state becomes
identical to the random case of the lattice theory [Panayiotou
and Vera, 1982].

The chemical potential for both cases reduced to,

®
B =k1(T)—-rlln(1—-p)+ln%+rlln[1+(-§1— )p]
1 1

RT
_ ZQIBepmelz [1_2_ 291+(B€11)9091(1—291) ] (40'
2 q: 912€P(R)/ €11 ’
B (D= rln(l—p)+1n 4 ¢ 1n[1+($—1) ]
RT T RETRITG TR n P

2aPer ™0 [1 s 2] 1)

5 P S

where superscript (R) represent for rigorous case and that of
(5) the simplified case. Based on the familiar classical thermody-
namic relations, the Fugacity coefficients for pure component 1
for both cases are obtained as

Ingy®= ~rin(l—p)—(1—r) ln[l + (% - )p]
1
Bul Dg,g,2]+ Do)
A LoVE 5. WP s
2 o aih . 0.0,7 |+ ™
91602(201 - eo) - anl (42)

In¢,¥= —nin(1-p)~(1-r) ln[l + (Q - )

n

_ _pzBeibiaq [ 16, :|~an1

1+ (43)
2 Qp

where Z, is the compressibility factor.
2. Second Order Properties

For polymers, experimental data are often reported as a second
order thermodynamic functions such as the thermal expansion
coefficient a; and the isothermal compressibility factor B;. Here
we omit expressions of those properties for the rigorous case
are omitted here [You et al, 1993, 1994a, c] and we only show
the expressions for the simplified case. The expressions for them
are obtained from the simplified EOS as

Tor=T[V] _T[ap], T rave

V0L gT plgT Vi*L oT |
BPVH+ 912[_‘% - % - Bs'u] ,
= + @)
P[ P + (1-h _ 68111”1913 ] n
1-p Q Qp
Prav Prgp
o _ 1 |o0Y | L] odP
PBi V[ap]r p[aP]
BPVy
= 45
T2y Goefr e ] )
1-p Q Ghp

where €' and r; are derivatives of €, and r, with respect to
InT. They can be determined from the temperature dependence
Of En and Vl‘".
3. Critical Conditions and Phase Transition

The critical point for the vapor-liquid phase transition is deter-
mined from the well-known criticality conditions. The criticality
conditions are derived from both EOS. Here we only give expres-
sions derived from the case of simplified EOS as follows

Py, (P _

(ap )T~O' ( op’ )T”O (46)
P _zen § 1 2] a/n-—1 2Benri® )

— +— o

op 2V {1—p 2[1+(Q1/r1—1)p] w? @D

|
P zsu{ 1 z n

2 — 2 9
op 2Vy Y(1—py 2 1+(%—1)p
1

e i)
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Fig. 1. Algorithm used for the estimation of pure molecular parame-
ters.

Once expressions for the criticality conditions are evaluated,
the critical compressibility factor Z, is readily calculated,

rll’f
Tep.

DETERMINATION OF MOLECULAR PARAMETERS

Z= (49)

In formulating both EQSs, the general relation in the lattice
theories, zq;=zr;— 2r,+ 2 is used by set ;=0. We also define the
characteristic volume V,;* as V;* =N, Vyr.. Therefore the character-
istic volume gives sufficient information for determining r; and
g. The other molecular parameters are the interaction energy
&, the coordination number z, and the unit cell volume V. We
set z=10 and Vy=9.75 cm®mol ™! [You et al, 1994a; Shin et al,
1995a]. Thus, both models require two molecular parameters, V;*
and ¢g;, respectively for each pure component i

Based on various sources of experimental data as discussed
elsewhere by the present authors [You et al, 1993, 1994a; Shin
et al, 1995b], the parameters V* and g, are determined by a
regression analysis at each isotherm and readily fitted to the fol-
lowing empirical correlations as a function of temperature for an
easy engineering practice.

% =E,+E,T+E, InT (50)
V*=V,+V,T+VInT (51)

Since the range of molecular species to which both the rigorous
EOS and the simplified EOS would be applicable are very wide,
the parameters V;* and e; for pure fluids are determined by
means of possible different methods depending on the property
data available at the temperature of interest. For the gases above
the critical point p-p-T data are fitted to the model to determine
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Table 1. Basic properties of solids and vapor pressure coefficient of
subcooled liquids for pure parameter estimation
Tm Tb Tc P(; " VHBT
W W
[K] (K] [K] [KPa]™ sex
Benzoic acid 3956 523. 752. 4560 .25 62 - -

Species
P! fem3/mol”

Naphthalene  353.5 491.1 7484 4050 269 .302 300 3834
Biphenyl 3424 5293 789. 3850 295 372 363 489.0
Anthracene 489.7 613.1 869.3 3080 236 353 - -

Phenathrene 3737 613. 873. 3130 239 330 432 5711

Myristic acid 3307 - 739.3 1640 - 952 - -
Palmitic acid 3372 - 7777 1410 - 975 - -
Stearic acid 3425 - 7988 1230 - 968 1.231 1343.
Penicillin V - 733.8 921.7 1720 - 1168 - -
Species VPA VPB VPC VPD EQ%°
Benzoic acid 10.5432 4190.70 —125.20 0.
Naphthalene -14.1844 166765  —23.538 30.653
Biphenyl —7.6740 1.2301 —-3679 —2292
Anthracene 11.0499 6492.44 —26.130 0.

Phenathrene 10.0985 5477.94 —69.390 0.
Myristic acid 49559 —31.2184 30481 —43.118
Palmitic acid —4.7425 —11.0978 12217 —36.926
Stearic acid —4.1199 —13.4943 10.728 —24.567
Penicillin V 70507 326557 142.19 0.

a. EQS(1) Miller’s Equation

GO et et e DN DD =~ DD

ln(%wl>:(1—x)"[(VPA)x+(VPB)x“5+ (VPO)x*+ (VPD)x*], x=

T
1- T.
EQS(2) Antoine’s Equation
VPB
1 it — —_—— e
n P“=VPA TTVPC

Where, P<[bar], T{K]

the two parameters for each isotherm by a conventional regres-
sion analysis.

For liquids and vapors in the subcritical region, parameters
are determined using the vapor pressure and the saturated liquid
volume wherein the relations of vapor-liquid equilibrium pressure
and chemical potential for vapor and liquid phases, i.e., P'=P*
and u'=y* are used for each isotherm. The algorithm used for
estimating the molecular parameters in this way are shown in
Fig. 1. In the calculation, substances whose vapor pressure and
saturated liquid volume are not available, the method of Frost-
Kalkwarf-Thodos or that of Miller is used for vapor pressure and
the Hankinson-Brost-Thomson equation or the modified Racket
equation is used for the liquid volume. These equations are also
used at temperatures below the melting point for the estimation
of subcooled liquid properties, which are required in the equilib-
rium calculation involving solid components. These equations are
reviewed in the literature by Reid et al. [1986] and the parame-
ters obtained in the present study for these empirical correlative
equations are shown in Tables 1 and 2.

For macromolecular species such as polymers whose vapor pres-
sure is negligible, we can only use data or correlations for liquid
density. Since we cannot determine two parameters from a single
property, we need an independent relation which may be provided
by an atomic group contribution [Bondi, 1968; van Krevelen,
1990; Timmermans, 1950]. Once V* is estimated by this idea
the energy parameter g; can be determined using the saturated
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Table 2. Vapor pressure coefficient and molar volume of solids

Species Formula MW, VTemdsmon VPA VPB VPC T range[K]
Benzoic acid C7H602 122.12 122. 9.408 4618.1 0. 308.15-343.15
Naphthalene C10H8 128.17 110. 8.722 37830 0. 308.15-353.15
Biphenyl C12H10 154.21 132. 9.804 43674 0. 308.15-343.15
Acridine C13H9N 179.22 178. 8.721 4740.1 0. 308.15-343.15
Anthracene C14H10 178.23 142, 9.755 5313.7 0. 308.15-343.15
Phenathrene C14H10 178.23 151 8.545 4567.7 0. 308.15-343.15
Myristic acid C14H2802 228.38 2648 18.303 8695.4 0. 308.15-313.15
Palmitic acid C16H3202 25643 300.6 8.304 4099.7 0. 308.15-313.15
Stearic acid C18H3602 280.45 335.9 7.019 3703.7 0. 308.15-313.15
Penicillin V C16H18N205S 350.40 231.7 4814 4430.5 0. 314.85-334.85
where, log P¥[Bar]=VPA— %5
Table 3. Coefficients of volume and energy parameter correlations for the simplified EOS
Chemicals Formula E. E, E, V., Vs V. T range[C]
—Non polar substance )
Pentane C5H12 100.22 0309 ~2.74 79.21 —.0007 348 0-177
Heptane C7H16 92.66 0381 -0.97 120.38 —.0050 1.79 0-240
Butene C4H8 90.66 0093 — 0470 84.81 0248 —2.30 0-110
Benzene C6H6 167.01 0292 -9.84 19.08 -.0153 11.90 10-200
Styrene C8H8 115.06 0237 0.01 26.97 —.0339 15.98 30-240
Ethylbenzene C8H10 254.54 0910 —2543 28.56 —.0334 16.57 0-200
—Weak polar substance
Diisopropylether C6H140 11957 0486 —~7.04 111.54 ~-.0101 2.3 0-200
Tetrahvdrofuran C4HBO 128.05 —.0076 —093 83.15 .0264 —-2.53 0-200
Strong polar substance
Chloroform CHCI3 124.20 --.0081 -0.29 69.98 0194 —0.38 0-210
Acetic acid C2H202 171.43 -.1360 7.81 60.96 0445 —-3.30 30-240
Water H20 1394.12 -.2031 —162.56 51.50 0320 ~7.55 0-200
Methanol CH40 916.94 0805 —131.58 —16.36 0081 9.29 15-220
Ethanol C2H60 598.84 0453 -79.77 61.60 0299 —245 30-110
Propanol C3H80 736.17 1585 ~111.64 —51.16 -.0274 22.80 10-244
Butanol C4H100 25540 -~.0649 —16.80 33.13 .0004 9.30 0-200
Butanol, tert C4H100 1{1%.27 —.1250 3.00 —80.24 —.0680 33.06 20-105
Supercritical substance
Carbon dioxide CO2 745.19 3371 — 13348 —56.87 —.0090 16.92 —27-137
Ethane C2Hé6 181.79 0842 —22.85 —12.99 -.0401 1346 —27-207
Ethylene C2H4 162.22 696 —19.09 38.17 0113 0.94 -27-207
Low vapor pressure substance
Naphthalene C10H8 9741 0114 6.39 10.85 —.0352 20.14 10-217
Palmitic acid C16H3202 4559.21 2238 ~71.73 206.82 —.0842 17.94 10-200
Stearic acid C18H3602 303.20 1388 - 39.50 94.89 —.0840 38.20 10-200
Penicillin V C16H18N205S 41.12 3746 0.77 519.83 3269 ~76.15 30-150

liquid volume.

The extensive compilations of the estimated values of coeffi-
cients for pure components defined by Eqs. (50) and (51) are
summarized in references [You et al, 1993, 1994a] for the case
of rigorous EOS given by Eq. (37) and (38) up to 200 pure fluids.
Also, the values of coefficients in Eq. (50) and (51) for simplified
EQOS given by Eq. (37) and (39) up to 200 pure compouents are
summarized in reference [Shin et al,, 1995b]. Especially the esti-
mated coefficients in reference [Shin et al, 1995b] categorize
pure systems as nonpolar, weak polar, strong polar, supercritical
and low volatile substances. As a demonstration, the values of
coefficients given by Egs. (50) and (51) for simplified cases for
several systems are summarized in Table 3. Also, the estimated

coefficients for some illustrative common polymers are shown
in Table 4. Accordingly we used these values in the illustrations
discussed in part I of the present article.

APPLICATION TO PURE FLUIDS

As far as the case of the rigorous EOS given by Eqs. (37) and
(38) is concern, we discussed in detail elsewhere (Table 1 and
2 in reference [You et al,, 1994a]), the computational aspects and
the exclusive comparisons of the rigorous EOS with experimental
data, so we omit here the justification of the theoretical and prac-
tical aspects of the rigorous EOS. Here, we briefly illustrate the
applicability of the case of simplified EOS given by Eqs. (37) and

Korean J. Ch. E.(Vol. 12, No. 3)
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Fig. 2. Discontinuities of pure molecular parameters across the critical
region of ethane.
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Fig. 3. Calculated saturation density-temperature of ethanol in the sub-
critical region by the simplified EOS.

(39) to pure fluids. Further illustrative applications to the various
phase Equilibria of mixtures based on the EOSs presented here
are discussed in part II of the present article.

For pure fluids useful at high pressure such as those fluids
as used in supercritical fluid technology, the experimental data
range from subcritical to supercritical region. In these fluids, we
intendedly presented smoothed regression values of parameters
in Table 3 despite the existence of discontinuities as illustrated
in Figure 2 for ethane. The same discontinuities are observed
for other supercritical fluids and light hydrocarbons.

For light substances useful below their critical temperature,
comparison of a model to experimental p™-P*-T data in the sub-
critical region and p-P isotherms in the supercritical region pro-
vides reasonable tests for the newly formulated EOS. For a wide
range of temperatures and pressures, the simplified EOS was
extensively tested. As a result we concluded that the present
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Fig. 4. Calculated saturation density-temperature diagram for heptane
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supercritical region by the simplified EOS.

simplified EOS can quantitatively be used for the calculations of
thermodynamic properties of pure components except in the near
critical region. As the illustrations show, calculated results of satu-
ration densities for ethanol and heptane are compared with exper-
imental data reported by Timmermans [1950] and they are shown
in Figs. 3 and 4, respectively. As one can see in these figures,
the error becomes smaller as the pressure is lowered and larger
as the critical point is approached. Correlated molecular parame-
ters deviate from the best fitted values near the critical tempera-
ture due to the discontinuity in the temperature dependence of
parameters and thus introduce large errors in this region.
The other EOSs in the same genre based on the Guggenheim
combinatory such as the EQOS proposed by Okada and Nose [1981
a, b], Panayiotou and Vera [1982], Kumar et al. [1978] and Smir-
nova and Victorov [1978], together with the present EOQS are
based on the mean field approximation to the partition function
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number of segment for equations of state based on the lattice
theory.

Table 4. Coefficients of the energy and volume parameter correlations
for the simplified EOS for common polymers

Polymer E, E E v
K - K/mK cm’/g
Polystylene (atatic) 84.318 1117 0. 8801
Poly (vinyl acetate) 120.287 —.0035 .7850
Polyisobutylene 95.868 0624 1.0080
Poly (propylene oxide) 102.436 0055 9162
Poly (dimethy] siloxane) 67.001 0730 8911

0
0
0
0
Polyethylene (branched) 92.833 0710 0. 1.0954
Polyethylene (HMW, linear) 123.201 0055 0. 11077
Polyethylene (linear) 113.946 0267 0 1.0951
Poly (0 methylstyrene) 91.897 1022 0 .9000
Poly (methyl methacrylate) 111.454 0659 0 790
Poly (n butyl methacrylate) 99.633 0518 0 8810
Poly (¢ hexyl methacrylate) 99.336 0790 0 .8400

and from which some inherent uncertainties tend to occur near
the critical region. However, as shown elsewhere by the present
authors [You et al, 1993, 1994a] for the case of rigorous EQS,
the calculated isotherm near the critical point is slightly better
than other models in this genre. Almost similar results are also
obtained for the simplified case and we omit further illustration

Table 5. Comparison of the present EOS with others in the same genre

for those aspects. As a final illustration, experimental p-P isotherm
data for ethane [ Timmermans, 1950] are compared with the sim-
plified EOS. In the pressure region ranges from 1 to 50 MPa,
the EOS correlates supercritical data quantitatively well. Our in-
tention was to find parameters by simple means for use the model
EOS in the equilibrium calculations of complex mixtures and in
this regards, the parameters shown in Table 3 for ethane are
determined mainly with the experimental data below the critical
point.

Finally to check the critical behavior of the present EQS, the
compressibility factor, Z is calculated as a function of segment
number, r; for the EOSs present here by using the criticality con-
ditions given by Eq. (46) together with the EOS proposed by San-
chez and Lacombe [1976a, b, 19781 and random case [ Panayiotou
and Vera, 1982]. In case of cubic EOSs, Z's are the constant
values (i.e., 0.375 for van der Waals’ EOS, 0.333 for original Red-
lich-Kwong and RK-Soave EQSs [ Soave, 1972, Redlich and Kwong,
19407, and 0.3074 for the Peng-Robinson EOS [Peng and Robin-
son, 1976]. However, for the case EOSs based on the lattice fluid
theories, Z's are depend on both the number of molecular seg-
ment and the random or nonrandomness of fluids as shown in
Fig. 6. For most of real fluids, Z's usually stay below 0.30. When
we set the segment number as r;=1, Z. of Sanchez-Lacombe EOS,
which is based on random lattice, is 0.38 while it is 0.323 for
the present nonrandom EOSs. When we sel r; infinite, all the
EQOSs based on the lattice fluid theory converge to 0.333. As a
result, we concluded that the EOSs based on the lattice fluid
theories whether they take into account the effect of nonrandom-
ness in lattice description, there exists a certain range of uncer-
tainty in the vicinity of the critical point of pure fluids. However,
we believe that both EOSs can be used quantitatively for phase
Equilibria as we illustrate fully in part II of the present article
except the near critical region; |T—T.J/T.<0.1 and |{P—P|/P.<
0.1. Also, we believe that any further improvement of lattice-fluid
EOSs in the critical region should be combined with such nonclas-
sical critical theories as renormalization techniques and scaling
laws of critical exponents.

In summary, the characteristic features of the present EOS
with other existing EOSs in terms simplicity, versatile applicabil-
ity, number of parameters and the dependence of parameters on
temperature and pressure are summarized in Table 5.

CONCLUDING REMARKS

A new generalized lattice fluid theory which explicitly take into
account the nonrandom distribution of holes for pure fluids and
fluid mixtures from the full Guggenheim combinatory has been
proposed. Also, extendedly, a new simplified EOS has been pro-

Model EOSs No. of pure parameters Binary parameters Remarks Reference
New Flory v*y, T* P* si/s, Xy dependent on T, p [29]
Lacombe-Sanchez vt ot & for each isotherm (48]
Okada-Nose v*, & & implicit in T [51]
Panayiotou-Vera V', i €5 K, Qi implicit in T (52]
Random Hole Vo Eil A inaccurate [52]
Kumar-Suter-Reid V', Ei Aj inaccurate [18]
Victorov-Smirnova v wy, hg ¢ - multiparameters [563]
Present models Vo, i Aj unified models

Korean J. Ch. E.(Vol. 12, No. 3)
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posed and the molecular thermodynamic framework behind the
general derivation of the theory is discussed. The simplified EOS
presented here was proposed primarily for practical use in the
phase equilibrium calculations of complex and/or macromolecular
systems at high densities. The simplified EOS as in the case of
the rigorous EOS contains two molecular parameters for a pure
fluid and one interaction energy parameter for a binary mixture.
We present the application to fluid phase Equilibria of various
mixtures based on both the EOSs in part II of the present article.
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NOMENCLATURE

A : configurational Helmholtz free energy
A . athermal contribution to A°

A®  :random contribution to A%

A nonrandom contribution to A°

AU . *ideal solution’ contribution to A°
A® : ‘excess’ contribution to A°

& : number of non-degenerate states for the random distribu-
tion

gve : number of non-degenerate states for the nonrandom cor-
rection

N, : Avogadro's number

N; : number of molecular species i

N;° :number of i-j segment contacts for the random distribu-
tion

N;  :number of i-j segment contacts for the nonrandom distri-
bution

No  :number of vacant sites or holes
N, : defined by N,=No+ZNr;
N, :defined by N,=N;+ZNg;
P : pressure [bar]

q : surface area parameter

Qu : mole fraction average of g;

T : segment number

In : mole fraction average of r;

R : universal gas constant [J mol™'K™!]
T : temperature [K]

U : configurational internal energy

U™ : ‘ideal solution’ contribution to U*

UE . ‘excess’ contribution to U

A : molar volume [cm’mol™!]

V#*  :characteristic volume of component i [cm’mol™']
Vi :volume of a unit cell {cm®]

X : (liquid) mole fraction of component i
yi : vapor mole fraction of component i
z : lattice coordination number

Greek Letters

N : thermal expansion coefficient

B : reciprocal temperature [1/kT]

B : isothermal compressibility factor
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¥  :configurational lattice partition function

L : nonrandomness correction factor for i-j segment contacts

T : nonrandomness factor defined by Eq. (26)

&; : interaction energy for i-j segment contacts [J]

o : fugacity coefficient for component i

P : total segment fraction

P : segment fraction of component i

T : chemical potential for component i

A : part of chemical potential due to internal degrees of free-
dom

A : binary interaction parameter for i-j contacts

0 : total surface area fraction

0; : surface area fraction of component i

[ : surface area fraction of component i on the hole free ba-
sis

Superscripts

L : liquid phase

sat  :saturation state

S : solid phase
\% : vapor phase
! : derivative with respect to In T
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