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THEORY 

Abstract-Consistent  calculation of fl~gacities ot fluid mixtures remains as one of the most importanl: subjects 
in contemporary molecular thermodynamics. In practice, equations of state (EOSs) and ge-models have been used. 
However, most EOSs are erroneous for condensed phases at high densities and ge-models are inapplicable for pressure- 
sensitive systems. Recently to remedy the shortcomings in both approaches, there has been a surge of new g~-EOS 
mixing rules. By equating any set of EOS and ge-models, the limitations in both approaches could be resolw_~d signifi- 
cantly. However, the self-consistency in *:he underlying concept of those mixing rules remains controversial. During 
the last several years, the present authors proposed a new lattice-fluid EOS and its simplification relevant to phase 
equilibrium calculations. Without employing any ge-EOS mixing rule and with only two parameters for a pure compo- 
nent and one adjustable interaction energy parameter for a binary mixture, results obtained to date demonstrated 
that the EOSs are quantitatively applicable to a great variety of phase equilibrium properties of mixtures, especially, 
for complex and/or macromolecular systems. In the present article we summarize the EOSs and extended the applica- 
tions to liquid-liquid Equilibria. In part I, we discussed briefly the molecular thermodynamic aspects of general deriva- 
tion of the EOS and a brief discussion of applying the EOSs to pure fluids while the illustrative application to various 
real mixture systems is discussed in part II. 
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INTRODUCTION 

Knowledge of fluid-phase Equilibria of fluids and fluid mixtures 
is essential for designing, optimizing and performing separation 
and purification processes. All design methods for chemical pro- 
cesses require quantitative estimates of various phase equilibria. 
Thus, a vast quantity of literature regarding the molecular ther- 
modynamics of phase equilibria has been generated during the 
last century. However, the goal of correlating or predicting mix- 
ture properties from pure component information remains as tile 
most elusive problem. Difficulty in predicting phase Equilibria 
of mixtures follows from the inadequate understanding of the 
intermolecular potential energy plays in fluid. Therefore, to calcu- 
late various phase Equilibria, it is necessary to construct empirical 
or semiempirical models; models are only approximations and, 
thus, contain parameters that must be obtained empirically. 

For any type of phase Equilibria, the thermodynamic function 
of primary interest is the fugacity (f) which is directly related 
to the chemical potential (~t) and in principle it can be calculated 
from the volumetric data, i.e., EOSs. The EOS method uses a 
homogeneous model for all phases and is equally applicable to 
pure compounds and mixture properties. However, to apply an 
EOS to condensed phase, volumetric data must be available over 
an entire density range from ideal gas state to the; condensed 
phase including a two-phase region and often it is not practical 
to do so because very little data of this type has been reported. 

tTo whom all correspondences should be addressed. 
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Alternatively, fugacities in condensed phases,, i.e., liquid mixtures, 
are calculated with activity coefficients (-r which are directly rela- 
ted to excess Gibbs energy (ge). Activity coefficient models are, 
however, strongly dependent on composition, weakly on tempera- 
ture and very weakly on pressure. So, they fail to take into ac- 
count inherently the effect of pressure and they cannot be applied 
to pressure-dependent systems such as polymer-supercritical fluid 
systems. 

Furthermore, performance demands on materials, which tradi- 
tional processing techniques cannot meet, have increased unpre- 
cedentedly in recent decades while process design engineers have 
to deal with more complex systems in which the activity coeffi- 
cient models are frequently more difficult to apply than EOSs 
and it is necessary to find appropriate EOSs to model the complex 
phase behavior of molecular mixtures under a variety of condi- 
tions. Thus, during the last decades, motiwation of research on 
developing new EOSs for complex mixtures has been increasing. 
Also, there has been a surge of new ge-EOS mixing rules as an 
ad hoc method. In the mixing rule, by equating a set of EOS 
and g~-models, the shortcomings in both approaches could be re- 
solved significantly. Especially, by utilizing information of group 
contribution g~-models such as UNIFAC, one can make an EOS 
as predictive and/or ge-models that can be used in high pressure 
system. However, the self-consistency in the underlying concept 
of those mixing rules remains controversial [Huron and Vidal, 
1977; Wong and Sandler, 1992]. 

Recently, based on the nonrandom lattice fluid theory of Gug- 
genheim [1952], the present authors proposed a new EOS and 
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its simplified version relevant to a variety of phase Equilibrium 
calculations [You et al., 1993, 1994a, b, c; Shin et al., 1994a, b, 
1995a, b; Yoo et al., 1994, 1995]. Without employing a g~-EOS 
mixing rule and with two parameters for pure components and 
one adjustable interaction energy parameter for binary mixtures, 
results obtained to date with the new EOSs demonstrated that 
they are quantitatively applicable to phase Equilibria of mixtures 
as well as pure fluids. Especially the EOSs are found to be reliably 
applicable to complex and/or macromolecular systems. In the pre- 
sent articles we summarize the thermodynamic framework related 
to the general derivation of the EOSs and present resuks of new 
extensions of the EOSs to liquid-liquid Equilibria and activities 
of solvents in polymer solutions. In part I, we briefly discuss the 
molecular thermodynamic aspects of general derivations of the 
EOSs. The illustrative applications of various phase Equilibria to 
real complex mixtures are discussed in part II. 

BRIEF REVIEW ON THEORIES OF SOLUTION: 
THE LATTICE THEORY 

The EOS approach for complete determination of phase Equili- 
bria is still often not as promising as the excess function approach 
because we usually do not have sufficiently accurate knowledge 
of volumetric properties of mixtures at high densities. Knowledge 
of volumetric information of mixtures whose molecules differ 
greatly in size is even more inaccurate because of our inadequate 
understanding of intermolecular forces and the fundamental struc- 
ture of condensed states of such systems. Up to the present cubic 
EOSs have been employed extensively although other new non- 
cubic EOSs have also been used [Carnahan and Starling, 1972; 
Peng and Robinson, 1976; Orby and Sandler, 1994]. The cubic 
EOS, however, proves physically inadequate when size differences 
between component molecules become large [Kumar et al., 1987]. 
Thus, alternatively, an EOS based on the perturbed hard chain 
theory has been developed for modeling polymer solutions whose 
molecules differ greatly in size [Donohue and Prausnitz, 1975]. 
The EOSs stemming from the technique of perturbation over the 
distribution function have been used to model mixtures of hydro- 
carbons consisting of small and large molecules, however, the 
apparent complexity and the large number of parameters, in these 
models make~ them unattractive for practical purposes. However, 
with increasing efficient computers and with advances in mole- 
cular physics, the perturbation theory of fluids is likely to provide 
a powerful tool for molecular thermodynamics in the near future 
[Prausnitz et al., 1986]. 

The other type of models developed for systems whose mole- 
cules differ greatly in size (i.e., polymer-solvent mixtures) is the 
lattice model approach based on the full Guggenheim combinatory 
of quasilattice description of fluids [Guggenheim, 1952]. As we 
discuss in the next section, EOS as well as ge-model:s can be 
modeled in principle from the Guggenheim's quasichemical lattice 
model which in its original form is restricted to small raolecules 
of essentially the same size. An earlier attempt for developing 
activity coefficient models stemming from the rigid lattice was 
made by Flory [1941, 1942], Huggins E1941, 1942] and others 
[Staverman, 1950; Tompa, 1956] known as the Flory-Huggins 
equation with z-parameter. The Flory-Huggins equation for real 
solution does not provide an accurate description of the thermo- 
dynamic properties of such solutions, but there is little doubt 
that this relatively simple theory contains most of the essential 
features which distinguish solutions of very large molecules from 

those of small molecules. Numerous extended works after the 
Flory-Huggins' pioneering model have appeared [Prausnitz et al., 
1986]. The latest developments in this field are attempts to allevi- 
ate the shortcomings inherent in these early attempts. 

Historically, the most important theory of solutions modeled 
after the Flory-Huggins equation is the Prigogine-Flory-Patterson' 
s free volume theory, sometimes called 'the new Flory EOS [-Pri- 
gogine, 1957; Flory, 1970; Patterson, 1969, 19701]. The new Flory 
theory resorted to the use of the generalized van der Waals theory 
with the lattice cell theory EPrausnitz et al., 1986; Hirschfelder 
et al., 1954] in formulating the canonical partition function for 
r-mer fluids. They obtained an EOS rather than an activity coeffi- 
cient. The EOS contains three parameters for pure fluids and 
in addition, two adjustable quantities are necess,~ry for the charac- 
terization of a binary mixture. This equation has been applied 
widely for the thermodynamic properties of polymer solutions 
I-Hirschfelder et al., 1954; Zeman and Patterson, 1972; Zeman 
et al., 1972; Slow et al., 1972] Also, by combining the residual 
activity expression derived from the new Flory EOS to the Flory- 
Huggins equation, the model has been used extensively for ob- 
taining the ?(-parameter of various polymer solutions EEichinger 
and Flory, 1968]. Also, until the present numerous extended ap- 
plications and modifications of the new Flory tbeory have appear- 
ed [Bonner et aL, 1972; Lee et al., 1972; Beret and Prausnitz, 
1975; Panayiotou and Vera, 1980]. Others also have attempted 
to adapt the lattice cell-theory with different notion for the free 
volume to obtain different formulations for chain molecular sys- 
tems [Somcynsky and Simha, 1971; Simha, 1977'; Jain and Simha, 
1980]. The new Flory EOS and its refinement.,; still need to as- 
sume a functional form in a pn'on" for the free volume which 
should be based on an empiricism and adopt an external degree 
of freedom c parameter, which is basically unknown for real solu- 
tions. Also, one needs to know density and pressure dependencies 
of the c parameter and two mixing parameters in order to apply 
the EOS polymer solutions. These disadvantages of the theory 
introduce an additional uncertainty to mixture correlations. 

The intrinsic difficulties retained in the new Flory theory have 
been overcome in a rigorous manner by the lattice-fluid theories 
based on the nearest-neighbor lattice statistical-mechanical theory 
named after Guggenheim [Panayiotou and vera, 1981] known as 
Guggenheim-Huggins-Miller approximation [Guggenheim, 1952]. 
The lattice fluid theory is used to enumerate the number of possi- 
ble configurations when r-mers were placed on a three dimension- 
al lattice. Different formulations of solutions can be considered 
under the framework of the generalized Guggenheim combinatory 
[Panayiotou and Vera, 1981]. Historically, several pioneering 
theories of solutions have originated from it. When all the lattice 
sites are occupied by molecules, we termed it as the 'rigid lattice' 
and one can derive not only the EOS but the activity coefficient 
such as the work of Barker [1952] or UNIQUAC [Abrams and 
Prausnitz, 1975] as discussed in the author's previous papers 
[You et al., 1993; Shin et al., 1995a]. However Sanchez and Laco- 
mbe E1976a, b, 1978], in an attempt to obtain :in EOS, assigned 
the first concept of empty sites called 'holes" into the lattice 
description. From a regular lattice description with holes an EOS- 
type model can be formulated. Since the Sanchez-Lacombe's 
works, several models with this concept have been proposed [Ku- 
mar et al., 1987; Kehiaian et al., 1978; Sanchez and Lacombe, 
1976a, b; Okada and Nose, 1981a, b; Panayiotou and Vera, 1982; 
Smirnova and Victorov, 1987]. 

The present authors, reviewed the existing lattice fluid theories 
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stemming from the full Guggenheim combinatory and the quasi- 
chemical approximation [-You et al., 1994a, b, c] and discussed 
in detail the unique features of the previous works done relating 
to the lattice theory by other investigators, with their advantage.,; 
and shortcomings. They also proposed a new method of approxi- 
mation to the Guggenheim combinatory, a new EOS, and its sim- 
plified expression. They extensively confirmed the quantitatiw.' 
applicability of the EOSs to the calculation of various phase Equi- 
libria [You et al. 1993, 1994a, b, c; Shin et al., 1994a, b; 1995a, 
b; Yoo et al., 1994, 1995]. In part I, we briefly summarize the 
consequences related to the new EOSs and present our recent 
efforts of extension of the EOSs to the calculations of liquid-liquid 
Equilibria. While activities of solvents in polymer solutions are 
discussed in part II. 

GUGGENHEIM COMBINATORY AND LATTICE 
PARTITION FUNCTION 

1. Guggenheim Combina tory  of Lattice Theory  
We briefly summarize here the nonrandom lattice hole partition 

function based on the full Guggenheim combinatory [Guggen- 
heim, 1952; Panayiotou and Vera, 1981; You et al., 1994aj. In 
a three dimensional lattice with the coordination number z and 
of the celt volume VH, molecules of component i occupy r, sites 
and interact with neighboring segment of molecules with effective 
surface area % so that zq, is the number of external contacts 
given by 

zq, = r~(z- 2) + 2(1 - l,) (1) 

where l, denotes molecular bulkiness factor. In the present work 
we set it as zero as others usually do. 

The configurational part of the nonrandom lattice pmtition func- 
tion away from the critical point in the mean field approximation 
may be written as follows, 

f l  ~ = g~ g~'n exp ( -  ~U) (2) 

and the random contribution ge is written in the Guggenheim- 
Huggins-Miller approximation, 

[ Nr! ] rN)Iz/2 (3) 
g~= L ~ J  

Here N, and N~ are defined as follows, 

N,= No + ZN,r., and Nq = No + ZN, q, (4) 

where No is the number of holes. The summation is over all mole- 
cular species unless specified otherwise. The expression for the 
nonrandom contribution g~  was also given by Guggenheim, 

(a> 

where No is the number of i - j  segment contacts and the quanti- 
ties with the superscript zero denoting the same for random mix- 
ing. 

N o satisfies the mass balance relations, 

2N.+ ]~N,~= Nizq,, 2N~,+ ZN~ for all i including holes 
(6) 

No NO,= zN,q.0~2 , NO, = zN,.q,O,, 0,=--~-,~, 0o = N~ (7) 

riN~ No (8) 

where 0i and 0i represent site fractions and segment fractions 
for component i, respectively and the quantities with subscript 
zero represent for hole fractions. The N, defined in Eq. (6) is 
related to N~,/ in the quasichemical approximation as expressed 
by Panayiotou and Vera [Guggenheim, 1952; Panayiotou and 
Vera, 1981]. 

S~i= ~ ,  L, (9) 

= r . r b e x p ( -  p As,,) (10) 

Ae, ,=e,+ ~ -  2e., (ii) 

where 13 denotes 1/kT. The nonrandomness fi~ctor F~j may be ob- 
tained from Eqs. (9)-(11) but can be expressed in an explicit form 
only for binary mixtures. 

The potential energy U in Eq. (2) is written as follows, 

U = ~.N,i( - ci,) + Z ZN,,(-  e,)) (12) 
i i>) 

where e 0 is the absolute value of interaction energy between seg- 
ments i and j. 

'Athermal solution' corresponds to making U = 0  and for this 
solution gN~=l or N0~ The explicit dependence of N o on 
the interaction energy parameter was obtained in the quasichemi- 
cal approximation by Guggenheim for binary mixtures without 
considering vacant sites or 'holes ' .  
2. An Elementary Derivation of Helmholtz Free Energy 

The expression for the configurational part of the Helmholtz 
free energy may be obtained using the relations, 

13A c = - lnfl  c (13) 

As recently presented in detail by the present authors [You et 
al., 1993, 1994a, b, c; Shin et al., 1994a, b, 1:995a, b; Yoo et al., 
1994, 1995], a new configurational HelmhoRz free energy can 
be derived from the full Guggenheim combinatory when l~ is zero 
by expanding N in terms of e,/around the athermal solution. The 
resulting expression of A ~ is given by: 

c o 2 c o 

N=A~~ Z Z (  0N / e , ~ + ( l / z  Z EZ(__2~zA__~r / e,#~+...(14 ) 

where superscript o indicates that the expression is evaluated 
at the reference athermal solution. When the algebra is done, 
a generalized rigorous expression of A ~ for a multicomponent sys- 
tem can be obtained from Eq. 04). It is given by 

13N = ZNAn p,+ Noln(1 - p ) -  z N~ln[ 1 + ( --~f - 1  )p] 
2 L \ rM 

- (-Z-~L) 13 [ X X0,0,e.~ + ( -2fl- )ZEZZ0,0,0,0~, 

• (e,~+ ~k~- e ~ -  e~)] (15) 

where qM=Zx, q, rM=Y-x~r~ and x~ is the mole fraction of species 
i. The lattice interaction energy e, i is the ahsolute value of the 
interaction energy between a segment of species i and that of 
species j, which is assumed as follows, 

e,~= ~ ( I -  ;%) (16) 

where the ~,) is the binary interaction parameter, e,j between holes 
and molecular species is set to zero. Thus, from Eq. (15) all config- 
urational thermodynamic functions can be formulated. 

Korean J. Ch. E.(VoL 12, No. 3) 
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3. A Simplified Vers ion of Helmholtz  Free Energy  
Although the formulation of Eq. (15) is self-consistent with a 

sound theoretical basis, a less complicated model would be more 
convenient in engineering oriented phase equilibrium calculations. 
Accordingly, we put our efforts to make the previous expression 
less complicated while preserving comparable accuracy. As recent- 
ly presented in detail by the present authors elsewhere [Shin 
et al., 1994a, b, 1995a, hi, the rigorous expression of N given 
by Eq. (15) can be reexpressed as 

N =  A~>+ A ~ +  A ~ve) (17) 

where the 'athermal'  part, A ~>, is equivalent to a combinatorial 
contribution in the random array, the ' random' part, A 'm~, is due 
to energy of random mixing and the 'nonrandom' part, A ~e~, 
corrects for effect of nonrandom mixing. 

We proposed an empiricization on the same lattice concepts. 
While retaining the athermal part, we may replace the remaining 
part by the sum if ideal solution part and excess part as, 

A c = A :~) + A ~ + A ~: (18) 

where the athermal part is given by Eq. (15), 

0Aea)= ZNiln pi+Noln(1-p)-ZNqln[l+(~--~--1)p] (19) 
Z L k FM 

on the hole free basis as O~=N~qJZN,q/=OJ,0 and Oq=0d.00~ 
is then written in the following nonrandom mixing form as discus- 
sed by Wilson [1964], 

~ =  ~ X~,, g~ (25) 

where the nonrandomness factor ~. is derived as ~.=exp[~30 
(e~- r 

Now using Eq. (20) we can convert Eqs. (23) and (24) into cor- 
responding Helmholtz energy expressions. 

- A ~s~ = ~2N 0ZNiq/~i (26) 

~3A ~ = 3~2N X0,1n[ZO~ ~] (27) 

The sum of Helmholtz free energies given by Eqs. (19), (26) and 
(27) yields the complete configurational Helmholtz free energy. 
The free energy expression is similar to that of the UNIQUAC 
model. The main difference is that the lattice contains holes now 
and an EOS can readily he derived from the flee energy. 

MODELING LATTICE EOS AND CHEMICAL 
POTENTIAL 

The remaining parts are obtained using the thermodynamic 
relation at constant volume and composition, 

A :i/r / 1 "~ 
= J , : roUd/~ ) +  constant (20) 

as in the derivation of the UNIQUAC model [Wilson, 1964]. The 
internal energy, U, is the sum of the 'ideal solution' part and 
the 'excess' part in the frame of the nonrandom two-fluid theo- 
ries as follows 

Z 0 - U t S - = ~ Z N i o o O  ~, ( 2 1 )  

_ e _ z  (1) _ ( 0 )  ( 2 2 )  U - 2  XNiqi(Z0~ e, 0ii e,,) 

where 0~ is the local surface area fraction of component j around 
the segment of component i and the superscripts (0) and (1) de- 
note the states before mixing and after mixing, respectively. 

We introduce two assumptions to simplify the evaluation of 
Eqs. (21) and (22). The first is that the holes are random as Pana- 
yiotou and Vera [1982] assumed in a different context. Then 
the following relation holds, 0~ :~), We have only 
one molecular species in the pure fluid state. Therefore for each 
pure species, 0,:~ (~ The second assumption is 0(l~=0~(~ 
which implies that the total surface area fraction occupied by mol- 
ecules is the same whether molecules are in pure states or in 
mixtures. This assumption becomes exact as the number of holes 
decreases to zero, in which case 0=1.  Based on these assump- 
tions, dropping the superscripts and rewriting Eqs. (21) and (22), 
we have 

- -  U Is - -  ~ ZNiq,(0e./i) (23) 

- U r = ~2N Z0,F.~[0(e~- e~)] (24) 

In writing Eq. (24), we have also defined the surface area fraction 

From the rigorous and simplified configurational Helmholtz free 
energy equations given by Eq. (15) and Eq. (18), respectively, 
expressions for configurational thermodynamic properties can be 
obtained for each case. Since the volume V :is represented by 
V=Vn(No+Ziri,) both EOSs are obtained from the relation; P=  - 
1/Vn(oAC/dNo)zN1. When the algebra is done, we have apparently 
identical form of EOS for both cases as follows 

P = - ~ 1  ~Zln[1 + ( ~ -  1 ) p ] -  In( l -p)}- (2)02~-~- -  n (28) 
13Vn t 2 L \ r~ 

Where cM of rigorous case is differ from the simplified case. They 
are given by, 

(29) 

eM(s~ = Z~:.~+ Z~ Zg, ~k/(._~/-- e.//) (30) 
Z0kv~ 

Here, eM ~ denotes for rigorous case and eM r for the simplified 
case. 

The chemical potential of component i in a mixture for both 
cases can be obtained by the equation; pi=Na(oA/ON3r.v=N=(d 
A/ON3r, g0+r,N=VnP. Here N~ is the Avogadro's number. The re- 
sulting equations for both cases are written lay, 

RT ST + ~  and S ~ -  R---T § RT (31) 

where 

RT = Y ' ( T ) - r 3 n ( 1 - P ) + l n ( ~  ( ~ - ~ - 1 ) p ]  (32) 
kq,./ L \ rM 

RT 2 [ q, 

_ 21~eNj + 13Zl~I~Oke~=~(~ + 2~., -- 2 ~ - -  ~)  ] (33) 
t~eM 
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B, (s~ - _ z q ~ u ( F [ 1  r, 1 ( l + e , 3 ]  
RT q, 0 I~ M 

z% -- 
+--~-[1--1n(ZOi%,)- ~ Z-O~r.~, ] (341, 

where y,(T) is the reference chemical potential which depends 
only on temperature. These general equations for multicomponent 
mixtures easily reduce to their pure forms since all eu become 
e,, and % become 1 for pure fluids [-You et al., 1994a; Shin el: 
al., 1995a~. 

The difference in chemical potential of component i in the mix- 
ture and the chemical potential of pure component i at the same'. 
temperature and pressure, ApdRT can readily be derived. Then, 
the activity coefficient can be obtained by the expression 

A ~  _ p, - g~, ~,,, _ In a, = ln(x,, Y3 (35) 
RT RT 

The Flory-Huggms ?6~ interaction parameter may be directly ob-- 
tained by the equation 

A~RT - I n  0 , + [ 1 - ~ ]  0,+L,O~ ~ (36) 

One of the advantages inherent to the lattice fluid theory is 
that the Guggenheim combinatory can readily be extended to r- 
mers and thus the EOS proposed here can be applied to polymer 
solutions. Comparisons of the present EOS to experimental data 
for polymer solutions are discussed in part II of the present arti- 
cle. 

THERMODYNAMIC PROPERTIES FOR PURE 
SYSTEMS 

1. EOS, Chemical Potential and Fugacity Coefficient  
For pure fluids, the simplified EOS given by Eqs. (28) and (30) 

reduced to the following expression since all eM become ~ and 
z o become 1 for pure compounds because holes are assumed to 
be random. Therefore EOS given by Eq. (28) and chemical poten-. 
tial Eq. (31) are simplified as follows. 

P :  ~ V u  {2In[1  + ( r ~ - 1 ) p ] - l n ( 1 - p ) } - ( 2 ) 0 , 2 ~ 2  (37) 

where ee of the rigorous case is differ from the simplified case. 
They are given by, 

~/s~ = eu (39) 

Here, ee e~ denotes for rigorous case and e/s~ for simplified case. 
Especially for the simplified case, the equation of state becomes; 
identical to the random case of the lattice theory [-Panayiotou 
and Vera, 1982]. 

The chemical potential for both cases reduced to, 

P~)RT = k l ( T ) - r d n ( 1 - p ) + l n ~ + r d n [ l + ( r ~ - l ) p ]  

zq,~ep~0,2 [1 r, 20, + ([~en)0o0,(1 -- 201) ] (40:1 
2 q~ 01~ee~)/en 

I~l(s)- ~ ' ~ ( T ) - r ' l n ( 1 - P ) + R T  lnq~ + r,ln[1 + ( ~ - 1 ) p ]  

zqd3ee(s)012 [ 1 -  r l  _ 2 ] 
2 k q~ O1 (41) 

where superscript (R) represent for rigorous case and that of 
(S) the simplified case. Based on the familiar classical thermody- 
namic relations, the Fugacity coefficients for pure component 1 
for both cases are obtained as 

lnO, m)= - r , l n ( 1 - p ) - ( 1 - r , ) I n [ 1  + ( r ~ - 1 ) p ]  

Z[3en [ r 1 0 ` 2 2  ~-~ ^ ] rlZ(~s 4p + q , 0 , -  ~!0,0o 2 4 

010o2(201 - 0o)- lnZ1 (42) 

In01 (s)= - r d n ( 1 - p ) - ( l - r l ) I n [ 1  + ( r ~ - 1 )  

PZ~E:ll01ql [1+ rl01 ] --lnZl (43) 
2 k qlP 

where Z~ is the compressibility factor. 
2. Second Order Properties 

For polymers, experimental data are often reported as a second 
order thermodynamic functions such as the thermal expansion 
coefficient al  and the isothermal compressibility factor ~.  Here 
we omit expressions of those properties for the rigorous case 
are omitted here [-You et al., 1993, 1994a, c] and we only show 
the expressions for the simplified case. The expressions for them 
are obtained from the simplified EOS as 

T a, TI-OV-I _ T [ O p ]  + T [0V,*-  
O'1 =VL~-J~--pL~-J, V~*LOT -_ 

~pv.+0?[13~u z ~g.] 
2 2 r /  = 

P [ l P p  + (1--rl)01 ~s .] rl 
ql qlP 

p~{s~ P [ 0 V ]  P [ O P ]  
vL-a~ J~=~L~J 

~PV~ 

(44) 

:T[ p fleur1013 ] (45) -t ( 1 -  r00~ 
ql ~ J 

where su'  and r /  are derivatives of en and r~ with respect to 
lnT. They can be determined from the temperature dependence 
of el~ and VI*. 
3. Critical Conditions and Phase Transition 

The critical point for the vapor-liquid phase transition is deter- 
mined from the well-known criticality conditions. The criticality 
conditions are derived from both EOS. Here we only give expres- 
sions derived from the case of simplified EOS as follows 

~ ( eP 
Op/T ' \ ap~ / r  = 0 - - =  (46) 

0P _ zeu { 1 q l / r l - 1  ] zlgeurl03 
1+ (q l / r l -  1)p J - -  qlp 2 

02P z~l~ [ q ~ -  1 12 _ z_/  r, . 

Op 2 2VH {(-~--1 p) 2 2 L1+(~_1) p 

zl3enrla0'4 [ I - 2 ( r ~ -  1)p]} (48) 
q12p 4 
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l Specify Temperature, T I 
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Compute ~, by EOS I 
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/~2- I <0.0001 ? ~ N O - - - - - ~  

I 
YES 

d &  td-p~ - d~,. I d A  

Fig. 1. Algorithm used for the estimation of pure molecular parame- 
ters. 

Once expressions for the criticality conditions are evaluated, 
the critical compressibility factor Z~ is readily calculated, 

Z~= rtP~ (49) 

D E T E R M I N A T I O N  O F  M O L E C U L A R  P A R A M E T E R S  

In formulating both EOSs, the general relation in the lattice 
theories, z% = z r , -  2r, + 2 is used by set 1, = 0. We also define the 
characteristic volume V,* as V~*= N~ Vur~. Therefore the character- 
istic volume gives sufficient information for determining ri and 
q, The other molecular parameters are the interaction energy 
e,, the coordination number  z, and the unit cell volume Vn. We 
set z = 1 0  and VH=9.75 cm3mol ~ [-You et al., 1994a; Shin et al., 
1995a]. Thus, both models require two molecular parameters, Vi* 

and a,g, respectively for each pure component i. 
Based on various sources of experimental data as discussed 

elsewhere by the present authors [You et al., 1993, l!~4a; Shin 

et al., 1995b], the parameters Vi* and e~, are determined by a 
regression analysis at each isotherm and readily fitted to the fol- 
lowing empirical correlations as a function of temperature for an 

easy engineering practice. 

e"-- = Ea + EbT+ E~ lnT (50) 
k 

V,* = V~ + VbT + V~InT (51) 

Since the range of molecular species to which both the rigorous 
EOS and the simplified EOS would be applicable are very wide, 
the parameters V,* and e,, for pure fluids are determined by 
means of possible different methods depending on the property 
data available at the temperature of interest. For the gases above 

the critical point p-p-T data are fitted to the model to determine 

Table 1. Basic properties of solids and vapor pressure coefficient of 
subcooled liquids for pure parameter estimation 

Tm T~ Tc Pc VttBr 
W WSRK Species [K] [K] [K] [KPa] Zc [cm3/mol_ 

Benzoic acid 395.6 523. 752. 4560 .25 .62 
Naphthalene 353.5 491.1 748.4 4050 .269 .302 .300 383.4 
Bipheny[ 342.4 529.3 789. 3850 .295 .372 .363 489.0 
Anthracene 489.7 613.1 869.3 3080 .236 .353 
Phenathrene 373.7 613. 873. 3130 .239 .330 .432 571.1 
Myristic acid 330.7 739.3 1640 .952 
Palmitic acid 337.2 777.7 1410 .975 
Stearic acid 342.5 798.8 1230 .968 1.231 1343. 
Penicillin V 733.8 921.7 1720 1.168 

Species VPA VPB VPC VPD EQS " 

Benzoic acid 10.5432 4190.70 - 125.20 0. 2 
Naphthalene - 14.1844 16.6765 - 23.538 30.653 1 

Biphenyl - 7.6740 1.2301 - 3.679 - 2.292 1 
Anthracene 11.0499 6492.44 -26.130 0. 2 

Phenathrene 10.0985 5477.94 - 69.390 0. 2 
Myristic acid 4.9559 -31.2184 30A81 -43.118 1 

Palmitic acid - 4.7425 - 11.0978 12.217 - 36.926 1 
Stearic acid -4.1199 -13.4943 10.728 -24.567 1 
Penicillin V 7.0507 3265.57 142.19 0. 3 
a. EQS(1) Miller's Equation 

p~t 
ln ( -~ [ )=  ( l - x ) I [ ( V P A ) x  + (VPB)xlS + (VPC)xa + (VPD)x6], x = 

T 
Tc 

EQS(2) Antoine's Equation 

VPB 
In P~t = VPA- 

T+VPC 
Where, P~t[bar], T[K] 

the two parameters for each isotherm by a conventional regres- 
sion analysis. 

For liquids and vapors in the subcritical region, parameters 

are determined using the vapor pressure and the saturated liquid 
volume wherein the relations of vapor-liquid equilibrium pressure 
and chemical potential for vapor and liquid phases, i.e., pv=pL 
and pv=taL are used for each isotherm. The algorithm used for 
estimating the molecular parameters in this way are shown in 
Fig. 1. In the calculation, substances whose vapor pressure and 
saturated liquid volume are not available, the method of Frost- 
Kalkwarf-Thodos or that of Miller is used for 'vapor pressure and 
the Hankinson-Brost-Thomson equation or the modified Racket 
equation is used for the liquid volume. These equations are also 
used at temperatures below the melting point for the estimation 
of subcooled liquid properties, which are required in the equilib- 
rium calculation involving solid components. These equations are 
reviewed in the literature by Reid et al. [1986] and the parame- 
ters obtained in the present  study for these empirical correlative 
equations are shown in Tables 1 and 2. 

For macromolecular species such as polymers whose vapor pres- 
sure is negligible, we can only use data or correlations for liquid 
density. Since we cannot determine two parameters from a single 
property, we need an independent relation which may be provided 
by an atomic group contribution [Bondi, 1968; van Krevelen, 
1990; Timmermans,  19501. Once V,* is estimated by this idea 
the energy parameter eii can be determined using the saturated 
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Table 2. Vapor pressure coefficient and molar volume of solids 

Species Formula M.W. VSI~,~a'm, VPA VPB VPC T range[K] 

Benzoic acid C7H602 122.12 122. 9.408 4618.1 0, 308.15-343.15 

Naphthalene C 10H8 128.17 110. 8.722 3783.0 0. 308.15-353.15 

Biphenyl C12H10 154.21 132. 9.804 4367.4 0. 308.15-343.15 
Acridine C13H9N 179.22 178. 8.721 4740.1 0, 308.15-343.15 

Anthracene C14H10 178.23 142. 9.755 5313.7 0. 308.15-343.15 
Phenathrene C14H10 178.23 15t. 8.545 4567.7 0. 308.15-343.15 

Myristic acid C14H2802 228.38 264,8 18,303 8695.4 0. 308.15-313.15 
Palmitic acid C16H3202 256.43 300,6 8.304 4099.7 0. 308.15-313.15 

Stearic acid C18H3602 280.45 335.9 7.019 3703.7 0. 308.15-313,15 

Penicillin V C16H18N205S 350.40 231.7 4.814 4430.5 0. 314.85-334.85 

where, log P~[-Bar]=VPA 
VPB 

T[K]  + VPC 

Table 3, Coefficients of volume and energy parameter correlations for the simplified EOS 

Chemicals Formula E~ Eo E~ V~ V~ V, T range[C] 
- N o n  polar substance 

Pentane C5H12 1C~).22 ,0309 -2 .74  79.21 - .0007 3A8 0-177 
Heptane C7H16 92.66 .0381 -0 .97  120.38 - .0050 1.7'9 0-240 

Butene C4H8 c~).66 .0093 -0 .470 84.81 .0248 -2.5;0 0-110 

Benzene C6H6 167.01 .0292 -9 .84  19.08 --.0153 11.,c~? 10-200 

Styrene C8H8 115.06 .0237 0.01 26.97 - .0339 15.98 30-240 

Ethylbenzene C8H10 234.54 ,0910 - 25.43 28.56 - .03,34 16.57 0-200 
- W e a k  polar substance 

Diisopropylether C6H140 119.57 .(t486 -7 .04  111.54 - .0101 2.38 0-200 

Tetrahydrofuran C4H80 128.05 - ,0076 - 0.93 83.15 ,0264 2.73 0-200 
Strong polar substance 

Chloroform CHCI3 124.20 - .0081 - 0.29 69.98 .0194 0.38 0-210 

Acetic acid C2H202 1;'1.43 --.1360 7.81 60.96 .0445 -3 .30  30-240 

Water H20 1394.12 -- .2031 - 162.56 51.50 .0320 -- 7,55 0-200 

Methanol CH40 91.6.94 .0805 - 131.58 - 16,36 .0081 9,29 15-220 
Ethanol C2H60 598.84 .0453 - 79.77 61.60 .0299 - 2.45 30-110 
Propanol C3H80 7716.I7 .I585 - 111.64 -51,16 - .0274 22.80 10-244 

Butanol C4H100 255.40 -,0649 - 16.80 33.13 .0OO4 9.30 O-200 
Butanol, tert  C4H100 142.27 - .1250 3.00 - 80.24 - .0680 33.06 20-105 

Supercritical substance 

Carbon dioxide CO2 745.19 .3371 - 133.48 - 56.87 - .0090  16.92 - 27-137 

Ethane C2H6 181.79 .0842 - 22.85 - 12.99 - .0401 13.46 - 27-207 

Ethylene C2H4 162.22 .t)696 - 19.09 38.17 .O113 0.94 - 27-207 
Low vapor pressure substance 

Naphthalene C10H8 !)7.41 .0114 6.39 10.85 - .0352 20.14 10-217 

Palmitic acid C16H3202 459.21 .2238 - 71.73 206.82 - ,0842 17.!)4 10-200 

Stearic acid C18H3602 31)3.20 .1388 - 39.50 94.89 - .0840 38.20 10-200 

Penicillin V C16H18N205S ,11.12 .3746 0.77 519.83 .3269 - 76.15 30-150 

liquid volume. 

The extensive compilations of the est imated values of coeffi- 

cients for pure  components  defined by Eqs. (50) and (51) are 

summarized in re fe rences  [You et al., 1993, 1994a7 for the case 

of rigorous EOS given by Eq. (37) and (38) up to 200 pure fluids. 
Also, the values of coefficients in Eq. (50) and (51) for simplified 

EOS given by Eq. (37) and (39) up to 200 pure components  are 
summarized in re ference  [-Shin et aI., 1995b3. Especially the  esti- 

mated coefficients in reference  [-Shin et al., 1995b] categorize 
pure sys tems  as nonpolar, weak polar, s t rong polar, supercritical 

and low volatile substances.  As a demonstrat ion,  the values of 
coefficients given by Eqs. (50) and (51) for simplified cases for 

several  sys tems are summarized in Table 3. Also, the est imated 

coefficients for some illustrative common polymers  are  shown 

in Table 4, Accordingly we used these  values in the illustrations 
discussed in part II of the present  article. 

A P P L I C A T I O N  TO P U R E  F L U I D S  

As far as the case of the rigorous EOS given by Eqs. (37) and 

(38) is concern, we discussed in detail e l sewhere  (Table 1 and 

2 in reference  [You et aL, 1994a]), the  computational aspects  and 
the exclusive comparisons of the rigorous EOS with exper imental  

data, so we omit here  the  justification of the theoretical and prac- 

tical aspects  of the rigorous EOS. Here,  we briefly illustrate the 
applicability of the  case of simplified EOS given by Eqs. (37) and 
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Fig. 2. Discontinuities of pure molecular parameters across the critical 
region of ethane. 
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Fig. 4. Calculated saturation density-temperature diagram for heptune 
in the subcritical region by the simplified EOS. 
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Fig. 3. Calculated saturation density-temperature of ethanoJ in the sub- 
critical region by the simplified EOS. 
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Fig. 5. Calculated isothermal density-pressure of pure ethane in the 
supercritical region by the simplified EOS. 

(39) to pure fluids. Further illustrative applications to the various 
phase Equilibria of mixtures based on the EOSs presented here 
are discussed in part II of the present article. 

For pure fluids useful at high pressure such as those fluids 
as used in supercritical fluid technology, the experimental data 
range from subcritical to supercritical region. In these fluids, we 
intendedly presented smoothed regression values of parameters 
in Table 3 despite the existence of discontinuities as illustrated 
in Figure 2 for ethane. The same discontinuities are observed 
for other supercritical fluids and light hydrocarbons. 

For light substances useful below their critical temperature, 
comparison of a model to experimental ff~LP~-T data in the sub- 
critical region and p-P isotherms in the supercritical region pro- 
vides reasonable tests for the newly formulated EOS. For a wide 
range of temperatures and pressures, the simplified EOS was 
extensively tested. As a result we concluded that the present 
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simplified EOS can quantitatively be used for the calculations of 
thermodynamic properties of pure components except in the near 
critical region. As the illustrations show, calculated results of satu- 
ration densities for ethanol and heptane are compared with exper- 
imental data reported by Timmermans [1950] and they are shown 
in Figs. 3 and 4, respectively. As one can see in these figures, 
the error becomes smaller as the pressure is lowered and larger 
as the critical point is approached. Correlated molecular parame- 
ters deviate from the best fitted values near the critical tempera- 
ture due to the discontinuity in the temperature dependence of 
parameters and thus introduce large errors in this region. 

The other EOSs in the same genre based on the Guggenheim 
combinatory such as the EOS proposed by Okada and Nose [1981 
a, b], Panayiotou and Vera [-1982], Kumar et al. [1978] and Stair- 
nova and Victorov [1978], together with the present EOS are 
based on the mean field approximation to the partition function 
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Fig. 6. Dependence of critical compressibility factor as a function of 
number of segment for equations of state based on the lattice 

theory. 

Table 4. Coefficients of the energy and volume parameter correlations 
for the simplified EOS for common polymers 

Polymer 
E. Eb E~ V* 
K - K/InK cm3/g 

Polystylene (atatic) 84.318 .1117 0. .8801 
Poly (vinyl acetate) 120.287 -.0035 0. .7850 
Polyisobutylene 95.868 .0624 0. 1.0080 
Poly (propylene oxide) 102.436 .0055 0. .9162 

Poly (dimethyl siloxane) 67.001 .0730 0. .8911 
Polyethylene (branched) 92.833 .0710 0. 1.0954 
Polyethylene (HMW, linear) 123.201 .0055 0. 1.1077 
Polyethylene (linear) 113.946 .0267 0. 1.0951 
Poly (o methylstyrene) 91.897 .1022 0. .9000 
Poly (methyl methacrylate) 111.454 .0659 0. .790 
Poly (n butyl methacrylate) 99.633 .0518 O. .8810 
Poly (c hexyl methacrylate) 99.336 .0790 O. .8400 

for those aspects. As a final illustration, experiraental p-P isotherm 
data for ethane [Timmermans, 1950] are compared with the sim- 
plified EOS. In the pressure region ranges from 1 to 50 MPa, 
the EOS correlates supercritical data quantitatively well. Our in- 
tention was to find parameters by simple means for use the model 
EOS in the equilibrium calculations of complex mixtures and in 
this regards, the parameters shown in Table 3 for ethane are 
determined mainly with the experimental data below the critical 
point. 

Finally to check the critical behavior of the present EOS, the 
compressibility factor, Zc is calculated as a function of segment 
number, r, for the EOSs present here by using the criticality con- 
ditions given by Eq. (46) together with the EOS proposed by San- 
chez and Lacombe [1976a, b, 1978] and random case [Panayiotou 
and Vera, 1982]. In case of cubic EOSs, Z,'s are the constant 
values (i.e., 0.375 for van der Waals' EOS, 0.333 for original Red- 
lich-Kwong and RK-Soave EOSs [Soave, 1972, Redlich and Kwong, 
1940], and 0.3074 for the Peng-Robinson EOS ['Peng and Robin- 
son, 1976]. However, for the case EOSs based on the lattice fluid 
theories, Z/s are depend on both the number of molecular seg- 
ment and the random or nonrandomness of fluids as shown in 
Fig. 6. For most of real fluids, Z,-'s usually stay below 0.30. When 
we set the segment number as r,= 1, Z~ of Sanchez-Lacombe EOS, 
which is based on random lattice, is 0.38 while it is 0.323 for 
the present nonrandom EOSs. When we set r, infinite, all the 
EOSs based on the lattice fluid theory conwerge to 0.333. As a 
result, we concluded that the EOSs based on the lattice fluid 
theories whether they take into account the effect of nonrandom- 
hess in lattice description, there exists a certain range of uncer- 
tainty in the vicinity of the critical point of pure fluids. However, 
we believe that both EOSs can be used quar~titatively for phase 
Equilibria as we illustrate fully in part II of the present article 
except the near critical region; I T - % t / % < 0 . 1  and IP-P,:I/Pc< 
0.1. Also, we believe that any further improvement of lattice-fluid 
EOSs in the critical region should be combined with such nonclas- 
sical critical theories as renormalization techniques and scaling 
laws of critical exponents. 

In summary, the characteristic features of the present EOS 
with other existing EOSs in terms simplicity, versatile applicabil- 
ity, number of parameters and the dependence of parameters on 
temperature and pressure are summarized in Table 5. 

and from which some inherent uncertainties tend to occur near 
the critical region. However, as shown elsewhere by the present 
authors [You el al., 1993. 1994a] for the case of rigorous EOS, 
the calculated isotherm near the critical point is slightly better 
than other models in this genre. Almost similar results are also 
obtained for the simplified case and we omit further illustration 

CONCLUDING R E M A R K S  

A new generalized lattice fluid theory which explicitly take into 
account the nonrandom distribution of holes for pure fluids and 
fluid mixtures from the full Guggenheim combinatory has been 
proposed. Also, extendedly, a new simplified EOS has been pro- 

Table 5. Comparison of the present EOS with others in the same genre 

Model EOSs No. of pure parameters Binary parameters Remarks Reference 

New Flory v*,p, T*, P* s//s~, x, dependent on T, p [29] 
Lacombe-Sanchez v*, r4i*, r ~2 for each isotherm [48] 
Okada-Nose v*, ~i 8, implicit in F [51] 
Panayiotou-Vera v*~, ~ii, e~. K,~ Q'il implicit in F [52] 
Random Hole v**, eii k,~ inaccurate [52] 
Kumar-Suter-Reid v*~, e. k, i inaccurate [18] 
Victorov-Smirnova v' wq, l'h2/, C4j, li multiparameters [53] 
Present models v**, ~i L~ unified models 

Korean J. Ch. g.(Vol. 12, No. 3) 
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posed and the molecular thermodynamic framework behind the 
general derivation of the theory is discussed. The simplified EOS 
presented here was proposed primarily for practical use in the 
phase equilibrium calculations of complex and/or macromolecular 
systems at high densities. The simplified EOS as in the case of 
the rigorous EOS contains two molecular paramel~ers for a pure 
fluid and one interaction energy parameter for a binary mixture. 
We present the application to fluid phase Equilibria of various 
mixtures based on both the EOSs in part II of the present article. 
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NOMENCLATURE 

K : cordigurationai Helmholtz free energy 
A ~) :athermal contribution to g 
A e~ :random contribution to A a 
A ~m :nonrandom contribution to N 
A ' ~  : 'ideal solution' contribution to N 
A ~ : 'excess'  contribution to N 
gR : number of non-degenerate states for the random distribu- 

tion 
g ~  : number of non-degenerate states for the nonrandom cor- 

rection 
N, : Avogadro's number 
N, :number  of molecular species i 
N~ : number of i-j segment contacts for the random distribu- 

tion 
: number 

bution 
: number 
: defined 

N~ of i-j segment contacts for the nonrandom distri- 

No of vacant sites or holes 
N, by N,= No+ XNir, 
Nq :defined by Nq=N0+ZN,q, 
P : pressure [bar] 

:surface area parameter 
tim :mole fraction average of c~. 
r~ : segment number 
ru :mole fraction average of ri 
R :universal gas constant [J mol-~K -t]  
T : temperature [K] 
W : configurational internal energy 
U ts : 'ideal solution' contribution to U ~ 
U e : 'excess' contribution to U ~ 
V : molar volume [cm3mol - l ]  
V~* :characteristic volume of component i [cm3mo1-1] 
Vu :volume of a unit cell [cm a] 
x~ :(liquid) mole fraction of component i 
y~ :vapor mole fraction of component i 
z :lattice coordination number 

Greek Letters 
a~ :thermal expansion coefficient 
13 : reciprocal temperature [1/kT] 
~ :isothermal compressibility factor 

~c : configurational lattice partition function 
F,j : nonrandomness correction factor for i-.j segment contacts 
~ii : nonrandomness factor defined by Eq, (26) 
eij :interaction energy for i-j segment contacts [J] 
~, : fugacity coefficient for component i 
p :total segment fraction 
Pi :segment fraction of component i 
la~ :chemical potential for component i 

: part of chemical potential due to internal degrees of free- 
dom 

~,)- :binary interaction parameter for i-j contacts 
0 :total surface area fraction 
0~ : surface area fraction of component i 
O~ : surface area fraction of component i on the hole free ba- 

sis 

Supersc r ip t s  
L : liquid phase 
sat : saturation state 
S : solid phase 
V : vapor phase 
' :derivative with respect to In T 
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